shared.to

NASA

Explore the universe and discover our home planet with the official NASA Tumblr account
Post on Tumblr
Follow on Tumblr
Pinterest
WhatsApp
LinkedIn
Reddit
VK
Telegram

This is a snapshot view of original blog at nasa.tumblr.com

Toplist Points 137403 == Toplist Rank [unknown-WIP]

Pictures 3
Retro. Modern. Iconic. That’s the worm.  #TheWormIsBack Our beloved symbol of exploration will fly once again, just in time to...
IMG
IMG

4 hours ago

Retro. Modern. Iconic. That’s the worm.  #TheWormIsBack Our beloved symbol of exploration will fly once again, just in time to...

Pictures 1
NASA Spotlight: Astronaut Jonny Kim Dr. Jonny Kim was selected by NASA to join the 2017 Astronaut Candidate Class. He reported...

3 days ago

NASA Spotlight: Astronaut Jonny Kim Dr. Jonny Kim was selected by NASA to join the 2017 Astronaut Candidate Class. He reported...

Tournament Earth is here! We want YOU to help us choose our best Earth image.

image

Since 1999, NASA Earth Observatory has published 16,000+ images. To celebrate our 20th anniversary and the 50th anniversary of Earth Day, we want you to pick our all-time best image. Each week from March 23 to April 28, you can vote for your favorite images. Readers will narrow the field from 32 nominees down to one champion in a five-round knockout-style tournament.

The nominees are separated into four groups: Past Winners, Home Planet, Land & Ice, and Sea & Sky.

Past Winners

image

No, that is not an animation of the death star orbiting Earth. It is the winner of Tournament Earth in 2016– the Dark Side and the Bright Side. The image shows the fully illuminated far side of the Moon that is not visible from Earth. Other contenders in this category are a picture of a volcanic eruption plume, sands and seas in the Bahamas, and lightning seen from the Space Station.

Home Planet

image

This picture of the Twin Blue Marbles is the number one seed in our “Home Planet” category, but that doesn’t mean it’s going to take home the crown. It has stiff competition from the iconic photo of Earth rising to an epic total solar eclipse to our Earth at night.

image

Land & Ice

image

Are you a land lover or ice lover? If you don’t know, you might found out by browsing the beautiful imagery in this category. Vote on scenes from the partially frozen North Caspian Sea (above) to lava flowing in Iceland between the Bardarbunga and Askja volcanoes (below).

image

Sea & Sky

image

Hurricanes, lightning, and volcanic explosions are just a few of the amazing captures from NASA satellites and astronauts in this category.

The model-based visual above shows an expansive view of the mishmash of particles that dance and swirl through the atmosphere. It shows tropical cyclones, dust storms, and fires spreading tiny particles throughout the atmosphere during one day in August 2018.

image

Our satellites also capture the fine mixing of particles and churning of tides in our rivers. The image above shows dissolved organic matter from forests and wetlands that stained the water dark brown near Rupert Bay. A similar process darkens tea.

Learn more about Tournament Earth in the video below.

See all of the images and vote now HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

5 days ago

Choose Your Champion: Tournament Earth 2020

Pictures 1
Introducing Astronaut Story Time – from Earth! 📖⁣⁣ Tomorrow and each weekday at 4 p.m. EDT, record-breaking astronaut Christina...

7 days ago

Introducing Astronaut Story Time – from Earth! 📖⁣⁣ Tomorrow and each weekday at 4 p.m. EDT, record-breaking astronaut Christina...

Pictures 1
If we could squeeze a galaxy, it would be this fluffy-looking one.  Spiral galaxies like this, located 60 million light-years...

8 days ago

If we could squeeze a galaxy, it would be this fluffy-looking one. Spiral galaxies like this, located 60 million light-years...

One thing astronauts have to be good at: living in confined spaces for long periods of time. 

image

Nearly 20 years successfully living on the International Space Station and more than 50 flying in space did not happen by accident. Our astronauts and psychologists have examined what human behaviors create a healthy culture for living and working remotely in small groups. They narrowed it to five general skills and defined the associated behaviors for each skill. 

For many of us in a similar scenario, here are the skills as shared by astronaut Anne McClain: 

Skill 1, Communication

imageShare information and feelings freely. Talk about your intentions before taking action. Discuss when your or others’ actions were not as expected. Take time to debrief after success or conflict. Admit when you are wrong.

Skill 2, Self-Care

imageBalance work, rest, and personal time. Be organized.Realistically assess your own strengths and weaknesses, and their influence on the group.Identify personal tendencies and their influence on your success or failure. Learn from mistakes. Be open about your weaknesses and feelings. Take action to mitigate your own stress or negativity (don’t pass it on to the group). 

Skill 3, Team Care

imageDemonstrate patience and respect. Encourage others. Monitor your team (or friends and family) for signs of stress or fatigue. Encourage participation in team (or virtual) activities. Volunteer for the unpleasant tasks. Offer and accept help. Share credit; take the blame.

Skill 4, Group Living

imageCooperate rather than compete. Actively cultivate group culture (use each individual’s culture to build the whole). Respect roles, responsibilities and workload. Take accountability; give praise freely. Then work to ensure a positive team attitude. Keep calm in conflict.

Skill 5, Leadership/Followership

imageAccept responsibility. Adjust your style to your environment. Assign tasks and set goals. Lead by example. Give direction, information, feedback, coaching and encouragement. Talk when something isn’t right. Ask questions.

We are all in this together on this spaceship we call Earth! These five skills are just reminders to help cultivate good mental and physical health while we all adjust to being indoors. Take care of yourself and dive deeper into these skills HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

9 days ago

An Astronaut’s Tips For Living in Confined Spaces

Pictures 4
To all those looking to the stars, believe in yourself – we do. ❤️ ⁣ ⁣ From auto mechanic to geologist - everyone's story is...
IMG
IMG
IMG

11 days ago

To all those looking to the stars, believe in yourself – we do. ❤️ ⁣ ⁣ From auto mechanic to geologist - everyone's story is...

Pictures 1
“Only in the darkness can you see the stars.” —Martin Luther King, Jr.‎ Pause for a moment and take in the vastness and beauty...

12 days ago

“Only in the darkness can you see the stars.” —Martin Luther King, Jr.‎ Pause for a moment and take in the vastness and beauty...

Pictures 1
NASA Spotlight: Astronaut Kjell Lindgren  Kjell N. Lindgren was selected by NASA in 2009. Born in Taiwan while his family was...

13 days ago

NASA Spotlight: Astronaut Kjell Lindgren  Kjell N. Lindgren was selected by NASA in 2009. Born in Taiwan while his family was...

Pictures 3
Take a moment, look outside your window. 🌷🌼 Today is the #FirstDayOfSpring in the Northern Hemisphere, also known as the vernal...
IMG
IMG

14 days ago

Take a moment, look outside your window. 🌷🌼 Today is the #FirstDayOfSpring in the Northern Hemisphere, also known as the vernal...

Pictures 1
NASA Spotlight: Astronaut Andrew Feustel Andrew J. Feustel was selected by NASA in 2000. The Lake Orion, Michigan native has a...

14 days ago

NASA Spotlight: Astronaut Andrew Feustel Andrew J. Feustel was selected by NASA in 2000. The Lake Orion, Michigan native has a...

We have always been in the transportation business, whether launching astronauts to the Moon or improving airplanes to make them fly faster and safer on less fuel. And whether directly – like more aerodynamic wings for passenger jets – or indirectly – like more comfortable driver seats in sedans – this is yet another way our innovations benefit the public.

Today, the world of transportation is on the brink of some big changes. Drones are poised to make more efficient deliveries, crop surveillance and even disaster relief efforts. Taxis may soon take to the skies as well. And self-driving cars are ever closer to reality.

As we release our latest edition of NASA Spinoff, our yearly publication that celebrates the many ways our technology helps people on Earth, let’s take a closer look at some ways we’re helping augment transportation — and keeping everyone on the roads and in the skies safe.

1. Better data for driverless navigation

image

If cars are going to drive themselves, they need to be able to “see” and assess the world around them, from other cars to pedestrians and bicyclists to a construction cone in the road. This is accomplished with the help of 3D cameras, or light detection and ranging (lidar), which sends out laser pulses and calculates where obstacles are by how long it takes that laser to bounce back.

But that, says engineer Farzin Amzajerdian at our Langley Research Center, is like building a 3D picture one pixel at a time. Instead, a new kind of lidar grabs a full array of pixels all at once. This “flash lidar” is faster and, because it has fewer moving parts, more reliable. It sailed through initial tests for possible use on a future Moon lander, and our partner has also sold the technology to a major car parts manufacturer, for autonomous cars. 

2. Opening the airspace for drones

image

Air traffic control has largely been a human operation so far, with people in control towers actively directing all 50,000 or so flights daily across the United States. But add in drones, and humans won’t be able to keep up: experts estimate there will soon be millions of aircraft in flight every day.

We’re helping automate and streamline flight control, working with the Federal Aviation Administration (FAA) and private companies to build the new technology needed to manage the anticipated challenges. Among other advances as a result, one company has built a platform used at airports, by air traffic controllers, and by drone operators around the world to more easily file flight plans, view the airspace, get clearance in restricted areas and more.

3. Software modeling for air taxis

image

It may sound like something from the Jetsons, but real people are imagining the technology needed to make flying taxis a thing. And they’re probably not going to look anything like the passenger planes that we’re used to.

But when you start with a totally new design, there are all sorts of variables, including how much it will weigh. When it comes to flying, weight is a critical factor. For one thing, a heavier craft needs more fuel, but more fuel makes it even heavier. And all that weight stresses the structure, which means reinforcing it (more weight again!). Do it wrong, and all these factors cycle endlessly until you have something too heavy to get off the ground.

New software, designed with our help, generates fast and accurate weight estimates of novel aircraft designs, helping engineers figure out what works and how to make it better. Among other customers? UberElevate, which is trying to take rideshares to the skies.

4. More nimble hand controls

image

We’ve even played a part in improving different kinds of joysticks, for everything from planes and video games, over the years. We had to because—especially in the early days of space travel—spacesuits were pretty unwieldy under the high g forces of launch and re-entry, so we needed to develop easy-to-use hand controls.

One former astronaut, Scott Parazynski, had acquired a wealth of experience training on and using NASA joysticks for jobs like maneuvering the International Space Station’s robotic arm. He realized similar technology could have even more of an impact on Earth. Parazynski, who is also a medical doctor, envisions improving robotic surgery with the new joystick he created; in the meantime, it’s already on the market for drones, making it easier than ever to use them to record aerial video, inspect a gas pipeline or even assess damage after a hurricane.

5. Helping farmers get the full picture

image

The “bird’s-eye view” is an expression for a reason: flying overhead provides a perspective you just can’t get with two feet planted on the ground. For the first time ever, we are going to get that bird’s eye view on Mars, and the same expertise that got us there is also giving farmers a new way to keep track of their crops.

The Mars Helicopter is poised to hitch a ride to the Red Planet with our latest rover, Perseverance, later this year. Designing it was a challenge: because there is so little air to provide lift on Mars, we needed something incredibly light (less than four pounds!) with large rotors that spin incredibly fast (nearly 3,000 times per minute).

We teamed up with a company we’ve worked with in the past on high-altitude, solar-powered, unmanned flyers. That company had something else in the works, using the same expertise: a drone equipped with two high-res cameras to capture images of crops as it flies overhead. The data from these images tells farmers where plants are thriving and where they’re not, informing them where they might need more (or less) water or fertilizer.

You can learn more about all these innovations, and dozens more, in the 2020 edition of NASA Spinoff. Read it online or request a limited quantity print copy and we’ll mail it to you!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

15 days ago

5 Ways NASA Technology is Shaping the Transportation of Tomorrow

What’s one perk about applying to #BeAnAstronaut? You’re one step closer to being on top of the world.

image

Part of the job of a NASA astronaut is a task called spacewalking. Spacewalking refers to any time an astronaut gets out of a vehicle while in space; it is performed for many reasons such as completing repairs outside the International Space Station, conducting science experiments and testing new equipment. 

image

Spacewalking can last anywhere from five to eight hours, and for that reason, astronauts’ spacesuits are more like mini-spacecraft than uniforms! Inside spacesuits, astronauts have the oxygen they need to breathe, water to drink and a bathroom! 

image

Spacesuits also protect astronauts from the extreme environment of space. In Earth orbit, conditions can be as cold as minus 250 degrees Fahrenheit. In the sunlight, they can be as hot as 250 degrees. A spacesuit protects astronauts from those extreme temperatures.

image

To stay safe during spacewalks, astronauts are tethered to the International Space Station. The tethers, like ropes, are hooked to the astronaut and the space station – ensuring the astronaut does not float away into space. 

image

Spacewalking can be a demanding task. Astronauts can burn anywhere from ~1500-2500 calories during one full assignment. That’s about equal to running 2/3 of a marathon. 

image

Does spacewalking sound like something you’d be interested in? If so, you might want to APPLY to #BeAnAstronaut! Applications are open until March 31. Don’t miss your chance to! 

image

Want to learn more about what it takes to be an astronaut? Or, maybe you just want more epic images. Either way, check out nasa.gov/astronauts for all your NASA astronaut needs!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

18 days ago

On Top of The World – Literally

Did you know that pi is involved nearly anywhere you look? We’re not talking about your favorite pastry! Pi (also written as the Greek letter 𝞹, or the number 3.14159…) is an irrational number, which means it can’t be written as a simple fraction like ½. It is the ratio of a circle’s circumference (the distance around its edge) to its diameter (the distance across it) and will always be the same number, regardless of the circle’s size. Here are some places you can find pi in the universe around us!

image

Our Transiting Exoplanet Survey Satellite, TESS, watches slices of the sky in its hunt for worlds outside our solar system — how many exoplanets are in its night-sky pie? Last July, TESS scientists created a mosaic of 208 images of the southern sky. At that time, it contained 29 confirmed and 1,000 possible exoplanets, and we’re still studying the data to find more. Since this awe-inspiring image is of the southern hemisphere (or half of a 3D circle), there will always be pi! Every slice contains something delicious for scientists to study.

image

Pi recently played a crucial role in new discoveries about Alpha Draconis, a well-studied pair of stars. After discovering these stars regularly eclipse each other, pi helped scientists learn more about them. Scientists detected the eclipses while monitoring the brightness of Alpha Draconis for periodic dips that could’ve been caused by planets passing between the star and us. Instead of a planet, though, researchers found that its smaller partner in crime was passing in between us and the larger star for about six hours at a time! 💫

image

Pi comes in handy as we learn more about these two stars. Knowing the percentage of the decrease in Alpha Draconis’ light and the formula for the area of a circle (A=𝞹r2 — or area equals pi times the square of the circle’s radius), scientists can predict the sizes of both stars.  Because stars typically orbit in an elliptical (or oval) shape, pi also helps scientists use the detection of these eclipses to figure out the orbits of the two stars!

image

So far we’ve seen pi in many places! But it’s also interesting to look at where pi can’t be found! We mentioned earlier that many orbit calculations involve pi … but not every one does! Pi does not factor into calculations of hyperbolic orbits — orbits that aren’t complete, or don’t return to where they started — the same way that it does with elliptical orbits! This is most commonly seen with comets. While many comets orbit normally in our solar system, some oddballs just pass through, like the interstellar ‘Oumuamua that zipped passed us in 2017. ☄️

image

Perhaps the most popular place you may find pi is in the shape of a typical pie! While NASA’s Fermi Gamma-ray Space Telescope studies gamma-rays, and not blueberries, we think this cool Fermi pie is worth sharing for Pi Day!

Find more ways scientists look up at the night sky and use pi here. And now, don’t be irrational, and go have some pi(e)! 🥧

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

19 days ago

Cosmic Piece of Pi!

In between the planets, stars and other bits of rock and dust, space seems pretty much empty. But the super-spread out matter that is there follows a different set of rules than what we know here on Earth.

For the most part, what we think of as empty space is filled with plasma. Plasma is ionized gas, where electrons have split off from positive ions, creating a sea of charged particles. In most of space, this plasma is so thin and spread out that space is still about a thousand times emptier than the vacuums we can create on Earth. Even still, plasma is often the only thing out there in vast swaths of space — and its unique characteristics mean that it interacts with electric and magnetic fields in complicated ways that we are just beginning to understand.

image

Five years ago, we launched a quartet of satellites to study one of the most important yet most elusive behaviors of that material in space — a kind of magnetic explosion that had never before been adequately studied up close, called magnetic reconnection. Here are five of the ways the Magnetospheric Multiscale mission (MMS) has helped us study this intriguing magnetic phenomenon.

1. Seeing magnetic explosions up close

Magnetic reconnection is the explosive snapping and forging of magnetic fields, a process that can only happen in plasmas — and it’s at the heart of space weather storms that manifest around Earth.

When the Sun launches clouds of solar material — which is also made of plasma — toward Earth, the magnetic field embedded within the material collides with Earth’s huge global magnetic field. This sets off magnetic reconnection that injects energy into near-Earth space, triggering a host of effects — induced electric currents that can harm power grids, to changes in the upper atmosphere that can affect satellites, to rains of particles into the atmosphere that can cause the glow of the aurora.  

image

Though scientists had theorized about magnetic reconnection for decades, we’d never had a chance to study it on the small scales at which it occurs. Determining how magnetic reconnection works was one of the key jobs MMS was tasked with — and the mission quickly delivered. Using instruments that measured 100 times faster than previous missions, the MMS observations quickly determined which of several 50-year-old theories about magnetic reconnection were correct. It also showed how the physics of electrons dominates the process — a subject of debate before the launch.

2. Finding explosions in surprising new places

In the five years after launch, MMS made over a thousand trips around Earth, passing through countless magnetic reconnection events. It saw magnetic reconnection where scientists first expected it: at the nose of Earth’s magnetic field, and far behind Earth, away from the Sun. But it also found this process in some unexpected places — including a region thought to be too tumultuous for magnetic reconnection to happen.

As solar material speeds away from the Sun in a flow called the solar wind, it piles up as it encounters Earth’s magnetic field, creating a turbulent region called the magnetosheath. Scientists had only seen magnetic reconnection happening in relatively calm regions of space, and they weren’t sure if this process could even happen in such a chaotic place. But MMS’ precise measurements revealed that magnetic reconnection happens even in the magnetosheath.  

image

MMS also spotted magnetic reconnection happening in giant magnetic tubes, leftover from earlier magnetic explosions, and in plasma vortices shaped like ocean waves — based on the mission’s observations, it seems magnetic reconnection is virtually ubiquitous in any place where opposing magnetic fields in a plasma meet.  

3. How energy is transferred

Magnetic reconnection is one of the major ways that energy is transferred in plasma throughout the universe — and the MMS mission discovered that tiny electrons hold the key to this process.

Electrons in a strong magnetic field usually exhibit a simple behavior: They spin tight spirals along the magnetic field. In a weaker field region, where the direction of the magnetic field reverses, the electrons go freestyle — bouncing and wagging back and forth in a type of movement called Speiser motion.

image

Flying just 4.5 miles apart, the MMS spacecraft measured what happens in a magnetic field with intermediate strength: These electrons dance a hybrid, meandering motion — spiraling and bouncing about before being ejected from the region. This takes away some of the magnetic field’s energy.

4. Surpassing computer simulations

Before we had direct measurements from the MMS mission, computer simulations were the best tool scientists had to study plasma’s unusual magnetic behavior in space. But MMS’ data has revealed that these processes are even more surprising than we thought — showing us new electron-scale physics that computer simulations are still trying to catch up with. Having such detailed data has spurred theoretical physicists to rethink their models and understand the specific mechanisms behind magnetic reconnection in unexpected ways. 

image

5. In deep space & nuclear reactions

Although MMS studies plasma near Earth, what we learn helps us understand plasma everywhere. In space, magnetic reconnection happens in explosions on the Sun, in supernovas, and near black holes.

These magnetic explosions also happen on Earth, but only under the most extreme circumstances: for example, in nuclear fusion experiments. MMS’ measurements of plasma’s behavior are helping scientists better understand and potentially control magnetic reconnection, which may lead to improved nuclear fusion techniques to generate energy more efficiently.

image

This quartet of spacecraft was originally designed for a two-year mission, and they still have plenty of fuel left — meaning we have the chance to keep uncovering new facets of plasma’s intriguing behavior for years to come. Keep up with the latest on the mission at nasa.gov/mms.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

20 days ago

Weird Magnetic Behavior in Space

image

Former NASA astronaut and Girl Scout alumna Jan Davis eating Girl Scout Cookies inside the shuttle Endeavour on Sept. 12, 1992. Image credit: NASA

Leadership, service, being prepared and doing your best – these qualities are exemplified by our astronauts, but are also shared by the Girl Scouts! Our astronaut corps has many scout alumnae, and over the years they’ve been breaking barriers and making names for themselves at NASA.

Today marks the 108th birthday of Girl Scouts in the United States, which has been inspiring generations of girls through leadership and STEM (science, technology, engineering and mathematics) activities to empower the explorers of today and tomorrow. To celebrate, we’re highlighting some of our Girl Scout alumnae over the years!

image

NASA astronaut and Girl Scout alumna Sunita Williams, who served as an International Space Station commander and spent 322 days in space during two spaceflight expeditions.

Former Scouts have served as crew members on numerous spaceflight missions.

image

From left: Susan Helms, the first female International Space Station crew member; Eileen Collins, the first woman to pilot and command a space shuttle; and Dr. Kathy Sullivan, the first American woman to perform a spacewalk.

Former Girl Scouts flew on more than one-third of the space shuttle missions and were pioneering forces as women began making their mark on human spaceflight. The first female crew member to serve on the International Space Station, the first to pilot and command a space shuttle and the first American woman to spacewalk were all Scout alumnae. 

They continue to break records, such as the first three all-woman spacewalks… 

image

Girl Scout alumnae and NASA astronauts Christina Koch and Jessica Meir made history when they conducted the first ever all-woman spacewalk on Oct.18, 2019. They went on to complete two more spacewalks, successfully completing their task of upgrading the space station’s battery charge/discharge unit. Christina and Jessica’s historic spacewalk was a testament to the growing number of women (and Girl Scouts) joining our astronaut corps; it is a milestone worth celebrating as we look forward to putting the first woman on the Moon with our Artemis Program! 

….and the longest spaceflight ever by a woman!

image

NASA astronaut Christina Koch smiles for a selfie while completing tasks during a spacewalk outside the International Space Station.

Koch went on to seal her name in the record books by surpassing Peggy Whitson’s record for the longest single spaceflight in history by a woman!

Understanding how the human body adjusts to things like weightlessness, radiation and bone-density loss is crucial as we look forward to embarking on long-duration spaceflights to the Moon and Mars. Thanks to former astronaut Scott Kelly’s Year in Space mission, we’ve been able to observe these changes on a biological male. Now, thanks to Christina’s mission, we are able to observe these changes on a biological female. 

Girl Scout alumnae will also help lead human exploration farther than ever before as members of our Artemis generation!

image

 From left: NASA astronauts Jessica Watkins, Loral O’Hara and Kayla Barron

On January 10, 2020 we welcomed 11 new astronauts to our ranks – including three Girl Scout alumnae! As part of the first-ever class of astronauts under our Artemis lunar exploration program, Kayla Barron, Jessica Watkins and Loral O’Hara are now qualified for assignments including long-duration missions to the International Space Station, the Moon and Mars.

They took a moment after graduation to share inspiration and insight for current and future Scouts!

Q: A question from the Girl Scouts: What inspires you?

A: “Being a part of an awesome team has always been what inspires me. Whether it’s your Girl Scout troop, a sports team, your class – I think for me always the people around me who push me to succeed and support me when I make mistakes and help me become my best self is what inspires me to show up and do my best.” - NASA astronaut Kayla Barron 

Q: How has being a Girl Scout helped you in becoming an astronaut?

A: “Being in the Girl Scouts when I was younger was really cool because, well, first it was just a group of my friends who got to do a lot of different things together. But it really gave us the opportunity to be exposed to a lot of different areas. Like we’d get to go camping. We’d get to ride horses and learn all of these different skills, and so that variety of skill set I think is very applicable to being an astronaut.” - NASA astronaut Loral O’Hara 

Q: What would your advice be for the next generation of Girl Scout astronauts?

A: “My advice would be to find something that you’re passionate about. Ideally something in the STEM fields: Science, Technology, Engineering or Mathematics, and to pursue that thing that you’re interested in. Pursue that passion, whatever it is. And don’t give up on your dreams, and continue to follow them until you arrive where you want to be.” - NASA astronaut Jessica Watkins 

To all the Girl Scouts out there, keep reaching for the stars because the sky is no longer the limit! 

Astronaut applications are OPEN until March 31 for the next class of Artemis generation astronauts who will embark on missions to the International Space Station, the Moon and Mars. If you’re interested in applying to #BeAnAstronaut or just want to learn more, click HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

21 days ago

The Path to High Adventure Begins With Scouting!

Pictures 1
Allow us to reintroduce someone ... the name’s Perseverance.  With this new name, our Mars 2020 rover has now come to life!...

23 days ago

Allow us to reintroduce someone ... the name’s Perseverance.  With this new name, our Mars 2020 rover has now come to life!...

Pictures 1
NASA Spotlight: Carbon Cycle and Ecosystems Earth Scientist Erika Podest  Dr. Erika Podest is a scientist with the Carbon Cycle...

27 days ago

NASA Spotlight: Carbon Cycle and Ecosystems Earth Scientist Erika Podest  Dr. Erika Podest is a scientist with the Carbon Cycle...

This is what it would look like if you were training to #BeAnAstronaut! Astronaut candidates must train for two years before they become official NASA astronauts. After graduation, you can look forward to more skill building when training for upcoming missions. Let’s dive into some of the courses you can expect once you’re selected for the job: 

T-38 Jet Training 

image

All astronaut candidates must learn to safely operate in a T-38 jet, either as a pilot or crew. Because this is the one area of their training that is not a simulation and involves decisions with life or death consequences, it teaches them to think quickly and clearly in dynamic situations.

 Neutral Buoyancy Lab Training

image

The mission of the Neutral Buoyancy Lab (NBL) is to prepare astronauts for spacewalking outside the International Space Station! Astronauts are lowered into a large pool wearing full spacesuits. The pool is full of hardware that replicates what the space station is really like, so astronauts are able to practice tasks they can expect on a spacewalk such as going out the airlock, finding a good path to the work site and more! The NBL is beneficial because it gives astronauts the ability to be neutrally buoyant which simulates the effects of microgravity.

Geology Training

image

Geology training courses are specially tailored to the work astronauts will do from the International Space Station or on the next interplanetary mission! Astronauts learn the basic principles of geology, see rocks in their natural environment and handle samples from their class discussions. It’s less like memorizing the names of rocks and more like learning how geologists think and work. 

Wilderness Survival Training 

image

Before they end up in space, astronauts carry out a significant portion of their training in aircraft on Earth. It’s unlikely, but possible, that one of those training planes could crash in a remote area and leave the humans on board to fend for themselves for a while. Knowing how to take care of their basic needs would be invaluable. Through the exercises, instructors hope to instill self-care and self-management skills, to develop teamwork skills, and to strengthen leadership abilities – all of which are valuable for working in the isolation of the wild or the isolation of space. 

Extreme Environment Training 

image

Astronauts participate in a variety of extreme environment training to prepare for the stresses of spaceflight. Pictured here, they are exploring the underground system of the Sa Grutta caves in Sardinia, Italy as a part of the European Astronaut Centre’s Cooperative Adventure for Valuing and Exercising human behavior and performance Skills (CAVES) expedition. Seasoned astronauts as well as rookies participate in the course and share experiences while learning how to improve leadership, teamwork, decision-making and problem-solving skills.

Virtual Reality Training

image

In our Virtual Reality Laboratory training facility at Johnson Space Center astronauts are able to immerse themselves in virtual reality to complete mission tasks and robotic operations before launching to space. The facility provides real time graphics and motion simulators integrated with a tendon-driven robotic device to provide the kinesthetic sensation of the mass and inertia characteristics of any large object (<500lb) being handled.

Want more? We’ve compiled all you need to know about what it takes to #BeAnAstronaut HERE.

Apply now, HERE!  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

28 days ago

Employee Training – It’s Kind of a Big Deal

Pictures 1
The trickster “Blinking Planetary” Planetary nebula NGC 6826 is located about 4,200 light years from Earth in Cygnus. When...

1 month ago

The trickster “Blinking Planetary” Planetary nebula NGC 6826 is located about 4,200 light years from Earth in Cygnus. When...

Pictures 2
Even star systems have identity crises. 🤷⁣ ⁣ According to data from observatories like our @nasachandraxray, a double star...
IMG

1 month ago

Even star systems have identity crises. 🤷⁣ ⁣ According to data from observatories like our @nasachandraxray, a double star...

Pictures 1
#TBT to 1989 when Voyager 2 spotted Uranus looking like a seemingly perfect robin’s egg. 💙⁣ ⁣ When our Voyager 2 spacecraft flew...

1 month ago

#TBT to 1989 when Voyager 2 spotted Uranus looking like a seemingly perfect robin’s egg. 💙⁣ ⁣ When our Voyager 2 spacecraft flew...

Have you heard the news? Astronaut applications are opening soon (March 2), and there’s never been a better time to apply then now. Here are a few signs that might mean you’re ready to take to the stars: 

1. You Don’t Mind Having Roommates

image

When you’re an astronaut, you have to work and live with your crew mates for extended periods of time. It’s important to the mission and your safety that everyone can collaborate and work together.

2. You LOVE Space

image

If the Milky Way, planets and space travel doesn’t excite you then this might not be the perfect job for you. But if you love galaxies, space station research and deep space exploration, then maybe you should take a look at our application.

3. Adventure Doesn’t Scare You

image

Being an astronaut means that you get to take part in adventures that most people will never experience. Imagine: sitting on the launch pad in the Orion spacecraft, atop a rocket that’s getting ready to launch. You’ll travel farther into space than any other humans have been and help push the boundaries of technology in the proving ground of deep space lunar orbits, leading the way for future missions to Mars.

4. You Want to be on the Cutting Edge of Science

image

Not only do astronauts get to travel to space, but they also get to conduct really cool research in microgravity. Did you know that right now they’re monitoring veggie growth on the International Space Station? This research could help with our future deep space exploration and could teach us a few things about growing plants on Earth. Learn more about all the awesome research on the space station HERE.

5. You’re Not Afraid of Heights

image

One of the coolest things about being an astronaut, is that you get to go to SPACE! At the very least, you’ll travel to the International Space Station, which is 250 miles above Earth. Or, you could be one of the first astronauts to travel to a distant asteroid or even Mars!

6. You Like Meeting New People

image

Space is a place where people from all around the world come together to push the boundaries of human exploration. Whether you’re living on the space station with an international crew, or embarking on Artemis missions to the Moon – you’re sure to make new friendships wherever you go. 

7. Pizza is Life  

image

Meal time is family time aboard the space station, and what better way to bond than pizza night! Getting to know your crew mates AND channelling your inner chef is always a win win.

8. World Traveling is on Your Bucket List

image

The International Space Station orbits Earth 16 times a day, so get ready to rack up those frequent flyer miles! A favorite past time of many astronauts is Earth watching from the station’s cupola observatory. Get lost in the Pacific Ocean’s blue hue, gaze at the Himalayas or photograph your favorite cities all from a bird’s eye view. Get assigned to an Artemis Moon mission? Even better! Have fun expanding your travels to the solar system. 

9. You’ve Dreamed of Flying 

image

Perk about the job? Your childhood dreams to fly finally come true. Whether you’re floating around the International Space Station or getting adjusted to our new spaceship, Gateway, your inner superhero will be beaming. 

10. You Like Helping Others 

image

Astronauts don’t just push the boundaries of human exploration, they also help pave the way for scientific breakthroughs back at home. Thanks to the microgravity environment of space, discoveries not possible on Earth are able to be unlocked. Investigations into Parkinson’s Disease, cancer and more have been conducted on the orbital lab. 

Interested in applying to become an astronaut? You’re in luck, applications are open from March 2- 31! Learn about some common myths about becoming an astronaut HERE.

Get more info on applying to be one of our astronauts HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

1 month ago

Signs You Might Be Ready to Apply to be a NASA Astronaut

It’s easy to get lost in fantasy worlds through science-fiction movies and novels, but did you know that some of your favorite fairy tale characters actually exist in cosmic form? From dwarfs and giants to shape-shifters and buried treasure, the universe is home to a multitude of mystical objects.

White Dwarf Stars

image

You’ve probably heard of dwarfs like Happy and Sneezy (or Gimli and Thorin), but it’s unlikely you’re familiar with the space-dwelling dwarfs with names like Sirius B and ASASSN-16oh. White dwarf stars like these are typically about the size of Earth, which is pretty small as far as stars go. They represent one of three final stages of stellar evolution, along with neutron stars and black holes. Each star’s mass determines which one it will ultimately become. Stars much more massive than the Sun typically become neutron stars or black holes, and lower-mass stars end up as white dwarfs.

image

Our Sun will eventually become a white dwarf after it exhausts its fuel, but don’t worry — we’ve got several billion years to go! Before it is reduced to a white dwarf it will actually expand into a red giant, swelling out to encompass Earth’s orbit. But we don’t have to wait billions of years to see stellar giants … some already peek out at us from the cosmic deep.

Giants and Supergiants

image

The red giant star Aldebaran, located about 65 light-years away, is about 5,000 times bigger than Earth. Our Cassini spacecraft imaged Aldebaran through Saturn’s rings in 2006, but you can see it for yourself during northern winter. Just look for the brightest star in the constellation Taurus.

image

Fairy tale giants may be taller than trees, but these supergiant stars can be over 100,000 times “taller” than our entire planet! Supergiant stars are likely becoming more rare as time goes on. While scientists believe they used to be more common, our whole galaxy now contains just a small smattering of supergiants.

image

These massive stars grace the galaxy for a relatively small amount of time. They burn through their fuel extremely quickly — in just a few million years, as opposed to hundreds of billions of years for the smallest stars! Supergiants often end their lives in dramatic explosions called supernovae.

image

Betelgeuse — the bright, reddish star marking the shoulder of Orion — is nearing the end of its life and has expanded to become a red supergiant star. It is destined to explode as a supernova, which might happen tonight … or within the next few hundred thousand years.

Ghostly Solar Neutrinos

image

Even an average star like our Sun has some seemingly magical qualities. Each second, it sends billions of phantom-like neutrino particles out into space. They travel almost as fast as light and don’t usually interact with normal matter. Billions of them are zipping harmlessly straight through your body while you read this. Even at night they go through the entire Earth before reaching you!

image

But that’s not all … these ghostly particles are shape-shifters, too! Neutrinos can change characteristics over time, morphing between different versions of themselves. Spooky!

Buried Treasure in the Heart of the Galaxy

image

Extensive clouds of dust enshroud the heart of our Milky Way galaxy, hiding it from our view — at least when it comes to visible light. The dust isn’t as big a problem for infrared light, however, which has allowed us to get a glimpse of our galaxy’s chaotic core thanks to our Hubble and Spitzer space telescopes.

image

Future missions may peer into the galactic core in search of buried treasure — thousands of planets orbiting distant stars!

Want to learn about more cosmic objects? Find them here!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

1 month ago

When Dwarfs Meet Giants, and Other True Cosmic Fairy Tales

When the weather outside is frightful…

Science in the field gets even more delightful. Two different missions are in the field right now, studying snow and how it affects communities around the country.

From our Wallops Flight Facility in Virginia, the IMPACTS mission is flying up and down the East Coast, investigating how snow forms inside clouds. In Grand Mesa, Colorado, SnowEx’s teams on the ground and in the air are taking a close look at how much water is stored in snow.

Hate going out in the storm? The IMPACTS mission can help with that! IMPACTS uses two planes – a P-3 Orion and an ER-2 – flying through and high above the clouds to study where intense bands of snowfall form. Better understanding where intense snow will fall can improve forecast models down the road — helping prepare communities for snowstorms.

Cameras mounted on the wings of the P3 took microscopic images of snowflakes, like this one.

At the same time, the SnowEx team is in Colorado, studying the depth and density of snow. Researchers are making radar spirals with snowmobiles and working in giant snow pits to measure things like snow water equivalent, or how much water is stored in snow.

SnowEx is helping us better understand snow’s role in ecosystems and human systems, like irrigation for agriculture. If you want to bring some corn for popping, SnowEx’s science can help grow that crop.

Follow along with our teams as they brave the cold and snow: https://twitter.com/nasaexpeditions

 Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 

1 month ago

Let It Snow for Science

Tonight, count the stars and remember a trailblazer. 

We’re saddened by the passing of celebrated #HiddenFigures mathematician Katherine Johnson. She passed away at 101 years old. 

An America hero, Johnson’s legacy of excellence broke down racial and social barriers while helping get our space agency off the ground.

Once a “human computer”, she famously calculated the flight trajectory for Alan Shepard, the first American in space.

And when we began to use electronic computers for calculations, astronaut John Glenn said that he’d trust the computers only after Johnson personally checked the math.

As a girl, Katherine Johnson counted everything. As a mathematician, her calculations proved critical to our early successes in space travel.

With slide rules and pencils, Katherine Johnson’s brilliant mind helped launch our nation into space. No longer a Hidden Figure, her bravery and commitment to excellence leaves an eternal legacy for us all.

“We will always have STEM with us. Some things will drop out of the public eye and will go away, but there will always be science, engineering and technology. And there will always, always be mathematics.” - Katherine Johnson 1918 -2020 

May she rest in peace, and may her powerful legacy inspire generations to come! What does Katherine Johnson’s legacy mean to you? Share in the comments. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 

1 month ago

Mathematician. Leader. Heroine. Remembering Hidden Figure Katherine Johnson

Pictures 1
Exploring Hell... up for the challenge?Venus is an EXTREME world, and we’re calling on YOU to help us explore it! NASA Jet...

1 month ago

Exploring Hell... up for the challenge?Venus is an EXTREME world, and we’re calling on YOU to help us explore it! NASA Jet...

Have you ever wondered if you have what it takes to become a NASA Astronaut? We’re accepting applications starting March 2, and we’re encouraging all eligible Americans to apply by March 31! 

It’s an incredible time in human spaceflight to be an astronaut. With Artemis, our sights are set on the Moon – to stay – by utilizing sustainable lunar missions, and you could be one of the humans on the surface! During their careers, this next class of astronauts may also fly on any of four different U.S. spacecraft: the International Space Station, Boeing’s CST-100 Starliner, SpaceX’s Crew Dragon and our Orion deep-space exploration vehicle; They will be at the cutting edge of a new era in human exploration. 

So, still interesting in joining our ranks as an Artemis generation astronaut? Here are a few things to note.

Myths about becoming an astronaut:

image

MYTH: All astronauts have piloting experience.

FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but could be beneficial to have.

image

MYTH: All astronauts have perfect vision.

FACT: It’s okay if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least 1 year has passed since the date of the procedure with no permanent adverse after effects.

image

MYTH: All astronauts have advanced degrees like, a PhD.

FACT: While a Master’s degree from an accredited university is necessary, the requirement can also be met with the completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.

image

MYTH: Astronauts are required to have military experience in order to be selected.

FACT: Military experience is not required to become an astronaut.

image

MYTH: You have to be a certain age in order to be an astronaut.

FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.

Okay, but what are the requirements?

image

The basic requirements to apply include United States citizenship and a master’s degree in a STEM field, including engineering, biological science, physical science, computer science, or mathematics, from an accredited institution. The requirement for the master’s degree can also be met by:

Two years (36 semester hours or 54 quarter hours) of work toward a Ph.D. program in a related science, technology, engineering or math field;A completed doctor of medicine or doctor of osteopathic medicine degree;Completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.

Candidates also must have at least two years of related, progressively responsible professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Astronaut candidates must pass the NASA long-duration spaceflight physical.

image

Applications for our next Artemis astronaut class open on March 2! Shoot for the stars and visit: https://www.nasa.gov/astronauts

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 

1 month ago

Want to Become an Astronaut? You Might Be More Qualified Than You Think

Pictures 2
In Roman mythology, the god Jupiter drew a veil of clouds around himself to hide his mischief. It was only Jupiter's wife, the...
IMG

1 month ago

In Roman mythology, the god Jupiter drew a veil of clouds around himself to hide his mischief. It was only Jupiter's wife, the...

Pictures 1
INCOMING! Roving scientist to arrive on Mars.  Save the date! One year from today, Feb. 18, 2021, our next rover is set to land...

1 month ago

INCOMING! Roving scientist to arrive on Mars.  Save the date! One year from today, Feb. 18, 2021, our next rover is set to land...

As Earth’s climate changes, some places are drying out and others are getting wetter, including the land that produces the food we eat. Farmers have to figure out how to adapt to changing climate conditions.

image

Our fleet of satellites has been watching over Earth for more than half a century. Some, like our joint Landsat mission with the U.S. Geological Survey (USGS), collect valuable data about the crops that make up our food supply and the water it takes to grow them.

image

Combining this wealth of satellite data with observations on the ground allows us to track how crop production changes over the years.

For example, this map shows how croplands have changed over the years to feed a growing population. The Agriculture Department (USDA) has used Landsat data since 2008 to track crops growing in the continental United States.

image

Agricultural scientists can even focus in on data for individual crops like corn, wheat and soybeans. They can look closely at regional crops, like citrus, that grow in only a few areas.

image

This nationwide view — provided by Landsat satellites orbiting 438 miles above Earth — is important to track the nation’s food supply. But with data from other satellites, like our ECOSTRESS instrument and ESA’s (the European Space Agency) Sentinel-2, agricultural scientists can monitor how healthy crops are in real time and predict when they’ll be ready to harvest.

In this false-color image of California farmland, red areas peak early in the season, whereas blue areas peak late. This information helps farmers watch over the plants in their fields, predict when they’ll be ready to harvest, and maximize crop production.

image

But while growing more and more crops sounds good, there can be challenges, like water. Especially when there’s not enough of it.

During California’s recent drought, just over 1 million acres of fertile farmland (shown in green) were fallow, or unused (red) in 2015. That’s nearly double the number of unused fields in 2011, the last year with normal rainfall before the drought.

image

Irrigating acres and acres of farmland takes lots of water. With remote sensing, scientists can track how irrigation fluctuates with climate change, new water management policies, or new technologies. Research like this helps farmers grow the most crops with the least amount of water.

image

As our climate changes, it’s more important than ever for farmers to have the knowledge they need to grow crops in a warming world. The data collected by our Earth-observing satellites help farmers learn about the planet that sustains us — and make better decisions about how to cultivate it.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

1 month ago

Satellite Data in Ag-tion: From Space to Your Plate

Pictures 1
It was a dark and stormy flyby... ⁣⁣ Our @NASAJuno spacecraft's JunoCam captured images of the chaotic, stormy northern...

1 month ago

It was a dark and stormy flyby... ⁣⁣ Our @NASAJuno spacecraft's JunoCam captured images of the chaotic, stormy northern...

Pictures 5
Need some space? We’ve got the job! 👨‍🚀👩‍🚀⁣  We’re accepting applications March 2-31 for the next class of #Artemis Generation...
IMG
IMG
IMG
IMG

1 month ago

Need some space? We’ve got the job! 👨‍🚀👩‍🚀⁣ We’re accepting applications March 2-31 for the next class of #Artemis Generation...

image

Relationships can be complicated — especially if you’re a pair of stars. Sometimes you start a downward spiral you just can’t get out of, eventually crash together and set off an explosion that can be seen 130 million light-years away.

For Valentine’s Day, we’re exploring the bonds between some of the universe’s peculiar pairs … as well as a few of their cataclysmic endings.

Stellar Couples

When you look at a star in the night sky, you may really be viewing two or more stars dancing around each other. Scientists estimate three or four out of every five Sun-like stars in the Milky Way have at least one partner. Take our old north star Thuban, for example. It’s a binary, or two-star, system in the constellation Draco.

image

Alpha Centauri, our nearest stellar neighbor, is actually a stellar triangle. Two Sun-like stars, Rigil Kentaurus and Toliman, form a pair (called Alpha Centauri AB) that orbit each other about every 80 years. Proxima Centauri is a remote red dwarf star caught in their gravitational pull even though it sits way far away from them (like over 300 times the distance between the Sun and Neptune).

image

Credit: ESO/Digitized Sky Survey 2/Davide De Martin/Mahdi Zamani

Sometimes, though, a stellar couple ends its relationship in a way that’s really disastrous for one of them. A black widow binary, for example, contains a low-mass star, called a brown dwarf, and a rapidly spinning, superdense stellar corpse called a pulsar. The pulsar generates intense radiation and particle winds that blow away the material of the other star over millions to billions of years.

image

Black Hole Beaus

In romance novels, an air of mystery is essential for any love interest, and black holes are some of the most mysterious phenomena in the universe. They also have very dramatic relationships with other objects around them!

Scientists have observed two types of black holes. Supermassive black holes are hundreds of thousands to billions of times our Sun’s mass. One of these monsters, called Sagittarius A* (the “*” is pronounced “star”), sits at the center of our own Milky Way. In a sense, our galaxy and its black hole are childhood sweethearts — they’ve been together for over 13 billion years! All the Milky-Way-size galaxies we’ve seen so far, including our neighbor Andromeda (pictured below), have supermassive black holes at their center!

image

These black-hole-galaxy power couples sometimes collide with other, similar pairs — kind of like a disastrous double date! We’ve never seen one of these events happen before, but scientists are starting to model them to get an idea of what the resulting fireworks might look like.

image

One of the most dramatic and fleeting relationships a supermassive black hole can have is with a star that strays too close. The black hole’s gravitational pull on the unfortunate star causes it to bulge on one side and break apart into a stream of gas, which is called a tidal disruption event.

image

The other type of black hole you often hear about is stellar-mass black holes, which are five to tens of times the Sun’s mass. Scientists think these are formed when a massive star goes supernova. If there are two massive stars in a binary, they can leave behind a pair of black holes that are tied together by their gravity. These new black holes spiral closer and closer until they crash together and create a larger black hole. The National Science Foundation’s LIGO project has detected many of these collisions through ripples in space-time called gravitational waves.

image

Credit: LIGO/T. Pyle

Here’s hoping your Valentine’s Day is more like a peacefully spiraling stellar binary and less like a tidal disruption! Learn how to have a safe relationship of your own with black holes here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

1 month ago

Cosmic Couples and Devastating Breakups

Pictures 1
“We saw to the edge of all there is—⁣⁣ So brutal and alive it seemed to comprehend us back.”  -Tracy K. Smith, US Poet...

1 month ago

“We saw to the edge of all there is—⁣⁣ So brutal and alive it seemed to comprehend us back.”  -Tracy K. Smith, US Poet...

Pictures 1
It’s official - we’re headed to do science on the Sun! ☀️ At 11:03 p.m. EST on Sunday, Feb. 9, Solar Orbiter, an international...

1 month ago

It’s official - we’re headed to do science on the Sun! ☀️ At 11:03 p.m. EST on Sunday, Feb. 9, Solar Orbiter, an international...

Video
You’ve seen things floating in space, but why does that happen and how does it affect science being conducted aboard the...

1 month ago

You’ve seen things floating in space, but why does that happen and how does it affect science being conducted aboard the...

We’re on the verge of launching a new spacecraft to the Sun to take the first-ever images of the Sun’s north and south poles!

image

Credit: ESA/ATG medialab

Solar Orbiter is a collaboration between the European Space Agency (ESA) and NASA. After it launches — as soon as Feb. 9 — it will use Earth’s and Venus’s gravity to swing itself out of the ecliptic plane — the swath of space, roughly aligned with the Sun’s equator, where all the planets orbit. From there, Solar Orbiter’s bird’s eye view will give it the first-ever look at the Sun’s poles.

image

Credit: ESA/ATG medialab

The Sun plays a central role in shaping space around us. Its massive magnetic field stretches far beyond Pluto, paving a superhighway for charged solar particles known as the solar wind. When bursts of solar wind hit Earth, they can spark space weather storms that interfere with our GPS and communications satellites — at their worst, they can even threaten astronauts.

To prepare for potential solar storms, scientists monitor the Sun’s magnetic field. But from our perspective near Earth and from other satellites roughly aligned with Earth’s orbit, we can only see a sidelong view of the Sun’s poles. It’s a bit like trying to study Mount Everest’s summit from the base of the mountain.

image

Solar Orbiter will study the Sun’s magnetic field at the poles using a combination of in situ instruments — which study the environment right around the spacecraft — and cameras that look at the Sun, its atmosphere and outflowing material in different types of light. Scientists hope this new view will help us understand not only the Sun’s day-to-day activity, but also its roughly 11-year activity cycles, thought to be tied to large-scales changes in the Sun’s magnetic field.

Solar Orbiter will fly within the orbit of Mercury — closer to our star than any Sun-facing cameras have ever gone — so the spacecraft relies on cutting-edge technology to beat the heat.

image

Credit: ESA/ATG medialab

Solar Orbiter has a custom-designed titanium heat shield with a calcium phosphate coating that withstands temperatures more than 900 degrees Fahrenheit — 13 times the solar heating that spacecraft face in Earth orbit. Five of the cameras look at the Sun through peepholes in that heat shield; one observes the solar wind out the side.

Over the mission’s seven-year lifetime, Solar Orbiter will reach an inclination of 24 degrees above the Sun’s equator, increasing to 33 degrees with an additional three years of extended mission operations. At closest approach the spacecraft will pass within 26 million miles of the Sun.

Solar Orbiter will be our second major mission to the inner solar system in recent years, following on August 2018’s launch of Parker Solar Probe. Parker has completed four close solar passes and will fly within 4 million miles of the Sun at closest approach.

image

Solar Orbiter (green) and Parker Solar Probe (blue) will study the Sun in tandem. 

The two spacecraft will work together: As Parker samples solar particles up close, Solar Orbiter will capture imagery from farther away, contextualizing the observations. The two spacecraft will also occasionally align to measure the same magnetic field lines or streams of solar wind at different times.

Watch the launch

image

The booster of a United Launch Alliance Atlas V rocket that will launch the Solar Orbiter spacecraft is lifted into the vertical position at the Vertical Integration Facility near Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida on Jan. 6, 2020. Credit: NASA/Ben Smegelsky

Solar Orbiter is scheduled to launch on Feb. 9, 2020, during a two-hour window that opens at 11:03 p.m. EST. The spacecraft will launch on a United Launch Alliance Atlas V 411 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Launch coverage begins at 10:30 p.m. EST on Feb. 9 at nasa.gov/live. Stay up to date with mission at nasa.gov/solarorbiter!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

1 month ago

Taking Solar Science to New Heights

As the Spitzer Space Telescope’s 16-year mission ends, we’re celebrating the legacy of our infrared explorer. It was one of four Great Observatories – powerful telescopes also including Hubble, Chandra and Compton – designed to observe the cosmos in different parts of the electromagnetic spectrum.

Light our eyes can see

The part of the spectrum we can see is called, predictably, visible light. But that’s just a small segment of all the wavelengths of the spectrum. The Hubble Space Telescope observes primarily in the visible spectrum. Our Chandra X-ray Observatory is designed to detect (you guessed it) X-ray emissions from very hot regions of the universe, like exploded stars and matter around black holes. Our Compton Gamma Ray Observatory, retired in 2000, produced the first all-sky survey in gamma rays, the most energetic and penetrating form of light.

Then there’s infrared…

Infrared radiation, or infrared light, is another type of energy that we can’t see but can feel as heat. All objects in the universe emit some level of infrared radiation, whether they’re hot or cold. Spitzer used its infrared instrument to make discoveries in our solar system (including Saturn’s largest ring) all the way to the edge of the universe. From stars being born to planets beyond our solar system (like the seven Earth-size exoplanets around the star TRAPPIST-1), Spitzer’s science discoveries will continue to inspire the world for years to come.

Multiple wavelengths

Together, the work of the Great Observatories gave us a more complete view and understanding of our universe.

Hubble and Chandra will continue exploring our universe, and next year they’ll be joined by an even more powerful observatory … the James Webb Space Telescope!

Many of Spitzer’s breakthroughs will be studied more precisely with the Webb Space Telescope. Like Spitzer, Webb is specialized for infrared light. But with its giant gold-coated beryllium mirror and nine new technologies, Webb is about 1,000 times more powerful. The forthcoming telescope will be able to push Spitzer’s science findings to new frontiers, from identifying chemicals in exoplanet atmospheres to locating some of the first galaxies to form after the Big Bang.

We can’t wait for another explorer to join our space telescope superteam!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

2 months ago

Celebrating Spitzer, One of NASA’s Great Observatories

The adventures awaiting astronauts on future long-duration missions have technologists researching sustainable ways to live away from Earth. We’re using what we know from almost 20 years of a continuous human presence on the International Space Station and looking at new technologies to prepare for missions to the Moon and Mars. 

image

Biotechnology – technology that uses living organisms to make products that provide a new use – is key to this research.

With biotechnology, we’re developing new ways to manufacture medicines, build habitats and more in space. Here are some ways biotechnology is advancing spaceflight and how the same research is reaping benefits on Earth.

image

Healthy astronauts

Planning ways to supply food for a multi-year mission on the Moon or Mars may require making food and nutrients in space. Our scientists are testing an early version of a potential solution: get microorganisms to produce vital nutrients like those usually found in vegetables. Then, whenever they’re needed, astronauts can drink them down. 

The microorganisms are genetically engineered to rapidly produce controlled quantities of essential nutrients. Because the microorganisms and their food source both have a long shelf-life at room temperature and only need water to be activated, the system provides a simple, practical way to produce essential nutrients on-demand. The same kind of system designed for space could also help provide nutrition for people in remote areas of our planet.

Our researchers are evaluating the first batches of BioNutrient samples that came back to Earth after an experimental run on the International Space Station.

image

Because space travel takes a toll on the human body, we’re also researching how biotechnology can be used to advance the field of regenerative medicine. 

Related cells that are joined together are collectively referred to as tissue, and these cells work together as organs to accomplish specific functions in the human body. Blood vessels around the cells vascularize, providing nutrients to the tissue to keep it healthy. 

Our Vascular Tissue Challenge offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment. The vascularized, thick-tissue models resulting from this challenge will function as organ analogs, or models, that can be used to study deep space environmental effects, such as radiation, and to develop strategies to minimize the damage to healthy cells.  

Plant factories

Humans have relied on plants’ medicinal qualities for thousands of years for everything from alleviating minor ailments to curing serious diseases. Now, researchers are trying to simplify the process of turning plants into medicine (i.e. how to make it compact and portable). If successful, the cost of biomanufacturing pharmaceuticals on Earth could go down, and plants could produce medicines in space.

image

Creating medicine on demand isn’t something we typically do, so we’re turning to experts in the field for help. Researchers at the University of California, Davis are transforming plants into mini-medicine factories for future Mars missions. They’re genetically altering an ordinary type of lettuce so that it produces a protein called parathyroid hormone. This hormone is an approved drug for treating osteoporosis, a common condition where bones become weak and brittle.

image

This type of research is important to long duration spaceflight. When astronauts land on Mars, they will have spent more than half a year in zero gravity on the flight there, and they’ll need to be strong and ready to explore. Having the technologies needed to treat that possibility, and other unanticipated health effects of long duration spaceflight, is crucial.

Growing habitats

Vitamins aren’t the only thing astronauts could be growing on Mars; we’re exploring technologies that could grow structures out of fungi.

An early-stage research project underway at our Ames Research Center is prototyping technologies that could “grow” habitats on the Moon, Mars and beyond out of life – specifically, fungi and the unseen underground threads that make up the main part of the fungus. These tiny threads build complex structures with extreme precision, networking out into larger structures like mushrooms. With the right conditions, they can be coaxed into making new structures – ranging from a material similar to leather to the building blocks for a planetary home.

The myco-architecture project envisions a future where astronauts can construct a habitat out of the lightweight fungi material. Upon arrival, by unfolding a basic structure made up of dormant fungi and simply adding water, the fungi would grow around that framework into a fully functional human habitat – all while being safely contained to avoid contaminating the external environment.

image

Recycling waste

Once astronauts arrive on the surface of the Moon or a more distant planet, they’ll have to carefully manage garbage. This waste includes some stuff that gets flushed on Earth.

Today, we’re already using a recycling system on the space station to turn urine into drinking water. Poop on the other hand is contained then disposed of on spacecraft returning to Earth. That won’t be possible on more distant journeys, so, we’re turning to biomanufacturing for a practical solution.

Biology can serve as an effective recycling factory. Microorganisms such as yeast and algae feed on all kinds of things classified as “mission waste.” Processing their preferred form of nourishment generates products that can serve as raw materials used to make essential supplies like nutrients, medicines, plastic and fuel.

image

By taking a careful look at biological processes, we hope to develop new, lightweight systems to leverage that biology to do some helpful in-space manufacturing.

From Space to Earth

Biotechnology is preparing us for longer space missions to the Moon and then Mars – farther from Earth than humans have ever traveled before. As we prepare for those exciting missions, we’re also conducting research on the space station for the primary benefit of everyone on Earth.

January is National Biotechnology Month. To learn more about some of the ways NASA is using biotechnology to solve challenges in space and improve life on Earth, visit this link. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

2 months ago

How is Biotechnology Preparing us to Live on the Moon and Mars?

One of the greatest mysteries that life on Earth holds is, “Are we alone?”

image

At NASA, we are working hard to answer this question. We’re scouring the universe, hunting down planets that could potentially support life. Thanks to ground-based and space-based telescopes, including Kepler and TESS, we’ve found more than 4,000 planets outside our solar system, which are called exoplanets. Our search for new planets is ongoing — but we’re also trying to identify which of the 4,000 already discovered could be habitable.

image

Unfortunately, we can’t see any of these planets up close. The closest exoplanet to our solar system orbits the closest star to Earth, Proxima Centauri, which is just over 4 light years away. With today’s technology, it would take a spacecraft 75,000 years to reach this planet, known as Proxima Centauri b.

How do we investigate a planet that we can’t see in detail and can’t get to? How do we figure out if it could support life?

This is where computer models come into play. First we take the information that we DO know about a far-off planet: its size, mass and distance from its star. Scientists can infer these things by watching the light from a star dip as a planet crosses in front of it, or by measuring the gravitational tugging on a star as a planet circles it.

We put these scant physical details into equations that comprise up to a million lines of computer code. The code instructs our Discover supercomputer to use our rules of nature to simulate global climate systems. Discover is made of thousands of computers packed in racks the size of vending machines that hum in a deafening chorus of data crunching. Day and night, they spit out 7 quadrillion calculations per second — and from those calculations, we paint a picture of an alien world.

image

While modeling work can’t tell us if any exoplanet is habitable or not, it can tell us whether a planet is in the range of candidates to follow up with more intensive observations. 

image

One major goal of simulating climates is to identify the most promising planets to turn to with future technology, like the James Webb Space Telescope, so that scientists can use limited and expensive telescope time most efficiently.

image

Additionally, these simulations are helping scientists create a catalog of potential chemical signatures that they might detect in the atmospheres of distant worlds. Having such a database to draw from will help them quickly determine the type of planet they’re looking at and decide whether to keep observing or turn their telescopes elsewhere.

Learn more about exoplanet exploration, here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

2 months ago

Are We Alone? How NASA Is Trying to Answer This Question.